
Developing a User-Driven
Framework for Generating
Field Data Collection
Applications

T. Lee

September 9, 2014

LLNL-TR-660035

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Developing a User-Driven Framework for Generating
Field Data Collection Applications

Timothy Lee

Lawrence Livermore National Laboratory
Environmental Restoration Department

Livermore, CA 94550, USA
tdlee1230@gmail.com

Abstract— This paper describes the implementation

of a web-based framework, which allows end users

to build custom data collection applications. The

emphasis of this project is to ease the transition from

handwritten forms to electronic mobile applications

for data collection.

Keywords— web-based, browser-based, mobile, data

collection

I. INTRODUCTION

The Environmental Restoration Department (ERD)

at Lawrence Livermore National Laboratory (LLNL) is

tasked with investigating and cleaning up soil and

ground water contaminated by past activities of LLNL

and its predecessors at its Livermore and Site 300

locations. ERD develops and applies interdisciplinary

science and innovative technology to restore the

environment and reduce the impacts of environmental

insults [2]. One of the methods in which ERD measures

the effectiveness of their remediation strategies is by

periodically drawing water samples from nearly 2000

wells they have drilled in and around LLNL’s sites. The

measurements confirm that ERD’s efforts have been

successful over the course of the past 35 years.

However, when samplers collect data from the wells,

they print out a group of forms that they bring into the

field and manually record their measurements. This

method of data collection raises two concerns: the

ongoing use of paper, and the possibility of paper-to-

database transcription errors.

For these reasons, ERD is looking to transition

towards a mobile method of collecting data. However,

this idea has three concerns: there are many forms for

which mobile applications would need to be created, the

mobile product must be deployable on different devices,

and the mobile product must be deployable in areas that

may not have a reliable Internet connection, such as

some of the wells at Site 300. To address these

concerns, ERD proposed the idea to construct a

framework which dynamically creates browser-based

mobile applications to fill samplers’ specific needs. For

my summer internship, I was assigned to assist in

developing this project.

In this paper, the focus will be on the progress I

have achieved on the framework under the guidance of

ERD. The paper will discuss the framework’s

implementation, the primary goals it accomplishes, and

how it will impact LLNL when it is finished.

II. BACKGROUND

Browser-based applications are becoming popular

due to their cross-platform capability and relative ease

of development. Developing applications native to a

specific operating system (OS) requires extra

knowledge such as understanding the language the OS

uses (along with its specific quirks) and being familiar

with the development kits for the OS. Development

becomes increasingly burdensome when deploying a

natively-built application on multiple OSes. On the

other hand, almost all modern mobile devices have a

web browser pre-installed on them. This opens

opportunities for developers to capitalize on one of the

few things all of those devices have in common. Web

development is a very broad and well-documented field,

which makes developing applications extremely easy.

The trade-off from using web-based design over native

design is that web-based applications work on any

device with a web-browser, but their user interface (UI)

is typically more challenging to create so that it fits on

all devices [1]. Furthermore, web-based applications

have limited capabilities compared to native

applications. However, the capabilities of web-based

applications are sufficient for ERD’s needs. For this

framework, the trade-off works in ERD’s benefit - if the

data collection applications were web-based, they would

work on any web-enabled device, saving data collectors

from having to invest in large numbers of specific

devices. Furthermore, the forms are simple enough that

intuitive layout and interface design is fairly easy to

accomplish.

III. PRODUCT DESCRIPTION

A. The Framework

Fig 1. The application builder.

The framework is an application builder which is

implemented using jQuery, Amplify, and Perl. jQuery is

a powerful, commonly-used JavaScript library which

helps make developing responsive, interactive pages

easier. Amplify is a JavaScript library that provides an

abstraction interface that makes it easier to manage local

storage of data on a device. The user is presented with

inputs for entering their user name, department, and

type of data to collect. Based on these choices, the menu

dynamically updates using jQuery to show a list of

checkboxes that correspond to fields the user would like

to have in his or her application. Once all of the choices

have been made, the user clicks the “Build App” button,

which instructs the Perl handler to generate the files for

the application. Each checkbox that is checked to be

included in the application passes some data into the

handler. The handler then iterates through all of the

checked items and creates UI components for each of

them. The application supports autocompletion and

input validation. If one of the checked boxes has data to

pass from the database to the built application, Amplify

will handle storing it on the device on which the user is

building their application. The application builder

produces two files: an HTML file which lists the

libraries the application will need, and a JavaScript file

which contains all of the application’s layout and

features.

B. Generated Application

The built application is coded using four JavaScript

libraries: jQuery Mobile, React, jQuery Validate, and

Amplify. jQuery Mobile and React are the primary

libraries in displaying the layout, while jQuery Validate

and Amplify add extra functionality to the application.

jQuery Mobile is a UI library which abstracts all of the

work of making the application fit on all browser sizes.

React is a layout framework library, designed to wrap

sections of HTML code into components, which can be

called using convenient single-line functions. The key

feature of React is that components can be very specific,

such as wrapping a text input and its accompanying

label into a component; but, they can also be very broad,

such as wrapping the contents of a page into a

component. This flexible methodology allows for an

organized hierarchy of broad-to-specific components

that accurately models how a UI is designed. jQuery

Validate is a plugin for jQuery, which makes error

checking very simple. Lastly, Amplify is used here to

retrieve the local data stored by the application builder

and store the collected data for uploading.

Fig 2. The data collection page in the built application.

The application has all of the input fields the user

requested, which are generated using one React function

call per input. Depending on the inputs, some of them

may have extra functionality. Certain fields have

autocompletion to make choosing from a list of

hundreds or even thousands of items much simpler.

Other fields, when selected, show well data that was

most recently taken, giving the data collector a general

context of what his or her data should be close to.

The application also features input validation. The

rules are simple to edit so that data collectors

themselves may specify the rules without in-depth

programming knowledge. If a user does not enter a

value into a required field, for example, the application

displays a red error message underneath the

corresponding field. At the bottom of the data collection

screen, the user finds a “Finished collecting data”

button. Upon clicking this, the validation plugin verifies

that all inputs follow the specified rules. If any of the

inputs do not adhere to the rules, the plugin will display

an error message beneath each invalid input. If all inputs

are satisfactory, Amplify will store all of the data that

the user has entered so far, and the application will

continue to the summary page.

Fig 3. The summary page in the built application.

The idea of a summary page was suggested so that

users can verify their work is 100% correct before they

leave their well or other site of data collection. This is a

precautionary step to catch any typographical errors.

The user will have buttons for three options at this

point. They can go back and edit their current

information, in case they made a mistake. They can save

their current data and reset the inputs, in order to collect

data at the next location. Lastly, they may quit the

application when they are finished collecting data.

One of the tools on ERD’s applications server

supports the uploading of tab-separated value (TSV)

files to their environmental information database. When

a TSV file is uploaded to this tool, the tool will

automatically parse out the file’s contents and prepare

them for direct uploading to the database. The

application built by the framework has a feature that

allows the collected data stored on the device to be

uploaded to the tool as a TSV file. This vastly simplifies

the data collection process, as nothing needs to be

printed and the user does not have to put in any effort to

upload their collected data directly to the database.

IV. EVALUATION

A formative evaluation will eventually be

conducted, in which the framework will be released to a

small group of data collectors. The data collectors will

provide feedback on how the framework can be

improved. After code adjustments have been made and

extra features have been implemented, the formative

evaluation will be reiterated to receive more feedback.

This cycle will likely continue until the framework is at

a high-enough standard of quality for data collectors to

begin collecting data with the applications produced by

it.

V. FUTURE WORK

Several functionalities are planned for future

implementation. One of these is having the framework

display a catalog of paper forms to the user, so that they

may select the paper form they would use as a template

for their application. This way, data collectors would

not have to know every field of the form to accurately

model it using the framework. Another feature is

improving the code structure of the framework to be as

modular as possible. The framework was designed to

make each piece of code independent from the pieces

around it, following good programming practice.

However, there are some parts of the framework which

were hard-coded due to time constraints. Lastly, a

feature to be added is for a built application to be able to

download fresh data directly from the database.

Currently, the application builder will download the

information and pass it through local storage to the built

application. While this is a valid technique, if the user

wants to use the application over the course of a few

days, the database may be updated in the meantime,

making the data they have on their device stale. If users

could refresh their data right before they leave the office

to collect data, the built application could be reused

again and again over a considerable period of time.

ACKNOWLEDGMENTS

I would like to thank Gary Laguna and the rest of

the staff in the Environmental Restoration Department

for providing great support throughout my internship.

This was a phenomenal learning experience for me, and

I am very grateful to have gotten the opportunity to

work on this project in this department.

REFERENCES

[1] Charland, Andre, and Brian LeRoux. "Mobile

Application Development: Web vs. Native." ACM

Digital Library. Communications of the ACM,

May 2011. Web. 15 Aug. 2014.

[2] "Environmental Restoration Division."

Environmental Restoration Division. Lawrence

Livermore National Laboratory, 13 Apr. 2004.

Web. 15 Aug. 2014.

